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Abstract

In this paper, a time series algorithm is presented for damage identification and localization. The
vibration signals obtained from sensors are modeled as autoregressive moving average (ARMA) time series.
A new damage-sensitive feature, DSF, is defined as a function of the first three auto regressive (AR)
components. It is found that the mean values of the DSF for the damaged and undamaged signals are
different. Thus, a hypothesis test involving the t-test is used to obtain a damage decision. Two damage
localization indices LI1 and LI2, are introduced based on the AR coefficients. At the sensor locations where
damage is introduced, the values of LI1 and LI2 appear to increase from their values obtained at the
undamaged baseline state. The damage detection and localization algorithms are valid for stationary
signals obtained from linear systems. To test the efficacy of the damage detection and localization
methodologies, the algorithm has been tested on the analytical and experimental results of the ASCE
benchmark structure. In contrast to prior pattern classification and statistical signal processing algorithms
that have been able to identify primarily severe damage and have not been able to localize the damage
effectively, the proposed algorithm is able to identify and localize minor to severe damage as defined for the
benchmark structure.
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1. Introduction and motivation

Structural health monitoring has become of great significance in the civil engineering
community in the last few years [1]. There is a need to continuously monitor the level of
performance and safety of structures, while subjected to everyday loads as well as earthquakes,
hurricanes and other extreme events, due to increased safety requirements and financial
implications. Recent research has demonstrated that wireless sensing networks can be successfully
used for structural health monitoring [2,3]. Low cost microeletromechanical sensors (MEMS) and
wireless solutions have been fabricated for structural measurement and this allows for a dense
network of sensors to be deployed in structures.
Most currently available damage detection methods are global in nature, i.e., the dynamic

properties (natural frequencies and mode shapes) are obtained for the entire structure from the
input–output data using a global structural analysis [4]. However, global damage measures are
not sensitive to minor damage and local damage. Furthermore, such methods involve finite
element modeling and system identification methods, which can be computationally expensive.
In the past few years, methods have been developed that utilize statistical signal processing

techniques to identify damage [5,6]. Such methods rely on the signatures obtained from the
recorded vibration, strain or other data to extract features that change with the onset of damage.
These features can then be classified in a pattern classification framework. A pattern classification
algorithm involves the following steps: (i) the evaluation of a structure’s operational environment,
(ii) the acquisition of structural response measurements and data processing, (iii) the extraction of
features that are sensitive to damage, and (iv) the development of statistical models for feature
discrimination. These methods avoid the complexity of global system identification techniques
and are particularly suitable for ongoing monitoring purposes. Furthermore, they may serve as a
technique for data reduction that will minimize the amount of data needed to be transmitted by
the radio of the wireless monitoring node.
Structural health monitoring involves the following steps, (a) diagnosis, which includes damage

identification, damage localization and damage level assessment and (b) prognosis, which includes
structure’s residual capacity estimation and residual life forecasting [7]. In this paper, damage
identification and localization are investigated in a pattern classification framework. A new
damage-sensitive feature (DSF) based on the autoregressive (AR) coefficients is presented. It is
found that there is a difference in the mean values of the DSF of the signals obtained from the
damaged and undamaged cases. The relationship between the AR coefficients used in the DSF and
the physical parameters of the system are investigated in Appendix A. It is shown that the AR
coefficients are related to poles of the mechanical system that is investigated and as expected,
changes in stiffness are manifested as changes in the AR coefficients. From t-tests, it is seen that
the difference in the means of the DSFs of the damaged and undamaged signals is statistically
significant. For localizing the damage, two localization indices, defined in the AR coefficient
space, are proposed. The algorithm has been tested on several data sets from the ASCE
benchmark structure [8]. Both the numerical simulation data [9] and the experimental data [10]
have been used.
The paper first summarizes the autoregressive moving average (ARMA) modeling aspects of

the vibration signals. The variation of DSF for each damage pattern is discussed next. Hypothesis
testing using the t-test and localization using LI are explained and then the results of the



ARTICLE IN PRESS

K.K. Nair et al. / Journal of Sound and Vibration 291 (2006) 349–368 351
applications of the algorithm on the ASCE benchmark structure are presented. The sensitivity of
the eigenvalues and eigenvectors are summarized in Appendix A.
2. Description of the damage algorithm

Structural damage affects the dynamic properties of a structure, resulting in a change in the
statistical characteristics of the measured acceleration time histories. Thus, damage detection can
be performed using time series analysis of vibration signals measured from a structure before and
after damage. In this study, we use the ARMA time series to model the vibration data obtained
from the sensor. The analysis is limited to linear vibration data (before and after the event) and
the assumption is made that after damage has taken place, the structure is still behaving linearly
under normal every day loads even though its properties may have changed. Thus, the present
study is limited to linear stationary signals.

2.1. Modeling of the vibration signals

A typical vibration signal from Sensor 1 is shown in Fig. 1. Before fitting the ARMA models to
the sensor data, it is important to perform standardization (or normalization) in order to compare
acceleration time histories (at a sensor location) that may have occurred due to different loading
conditions (i.e., different magnitudes and directions of loads) and/or different environmental
conditions. After normalization the features extracted from the signals from undamaged cases
would have similar statistical characteristics and can be compared.
Let xi(t) be the acceleration data from sensor i. This sensor data is then partitioned into

different streams xij(t), where i denotes the sensor number and j denotes the jth stream of data
Fig. 1. A typical raw acceleration time history from an undamaged case serving as the reference signal for subsequent

damage detection (Sensor 2).
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from the sensor i. Then, the normalized signal ~xijðtÞ is obtained as follows:

~xijðtÞ ¼
xijðtÞ � mij

sij

, (1)

where mij and sij are the mean and standard deviation of the jth stream of sensor I, respectively.
For notational convenience, xij(t) will be used instead of ~xijðtÞ. The next step is to check for trends
and stationarity in the data [11]. This can be done by observing the autocorrelation function
(ACF). Fig. 2 shows that the ACF of the normalized data has a cyclical trend that will need to be
removed. For detrending the data, three methods are used, (i) harmonic regression, (ii) simple
average window and (iii) moving average window [11]. It is found that harmonic regression could
not remove the trends and thus a combination of the simple average window and the moving
average window is used. The window sizes are chosen so that the residuals obtained from this
process are stationary. A review of the autocorrelation plot or the Ljung–Box statistic provides
further test that this condition is preserved. A more detailed explanation is provided in subsequent
sections.
Once the initial data pre-processing is complete, the optimal ARMA model order and its

coefficients are estimated [11]. The ARMA model is given by

xijðtÞ ¼
Xp

k¼1

akxij t� kð Þ þ
Xq

k¼1

bk�ij t� kð Þ þ �ijðtÞ, (2)

where xij(t) is the normalized acceleration signal, ak and bk are the kth AR and MA coefficient,
respectively; p and q are the model orders of the AR and MA processes, respectively, and eij(t) is
the residual term.
The Burg algorithm (also known as the maximum entropy method) is used for estimating the

coefficients of the ARMA process [11]. The optimal model order is obtained using the Akaike
Fig. 2. Autocorrelation function of the normalized data.
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information criteria (AIC) [11]. The AIC consists of two terms, one of which is a log-likelihood
function and the other term, which penalizes the number of terms in the ARMA model. Fig. 3
shows the variation of the AIC values with the AR model order. It is seen that an AR model order
of 5–8 and MA model order of 2–4 is appropriate for the analysis. Also, a cross-validation
analysis is carried out to check the accuracy of the results. For a particular data stream, the data
set is split in two, one is used for the analysis and the other is used for forecasting. In the analysis
part, the coefficients of the ARMA model are ascertained. Using these coefficients, the values of
the acceleration data are predicted. The error between the predicted values and actual values are
obtained to be a minimum using the above model orders.
In order to obtain the AR and MA coefficients the Burg Algorithm is applied. Then the

residuals obtained are tested to determine if they are normal and independent and identically
distributed (i.i.d.). Fig. 4(a) shows the normal probability plot of the residuals. The straight line
variation indicates a normal distribution of the data, which is violated at the tails. Fig. 4(b) shows
the variation of the residuals with time. It is seen that there is no trend, therefore, indicating
homoskedasticity. Fig. 4(c) shows the ACF of the residuals, from which it is observed that the
values of the ACF at lags greater than one are not statistically significant. The Ljung–Box statistic
is also used to test the i.i.d. assumption of the ARMA residuals. The Ljung–Box statistic is defined
as follows:

QLB ¼ nðnþ 2Þ
Xh

j¼1

r2 jð Þ

n� j
, (3)

where n is the sample size, r(j) is the autocorrelation function at lag j, and h is the number of lags
being tested. The null hypothesis of randomness is rejected if QLB4w21�a;h, where a is the level of
significance of the hypothesis test and w21�a;h is the (1�a)th percentile of the w2 distribution with h
degrees of freedom. For this particular data set, the null hypothesis is accepted. Thus, the
assumptions made on the residuals are satisfied.
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(b) Normal probability plot of the residuals. (c) Variation of the autocorrelation function of the residuals with lag.
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2.2. Definition and development of the DSF

In this section, the ARMA time series model is used to develop features that discriminate
between damage and non-damaged state of a structure. Several DSF were considered. Of those
various DSFs considered, those depending on the first three AR coefficients appeared to be most
promising because these coefficients are statistically the most significant among all the coefficients
of the model. After testing several different combinations with the first three coefficients, it was
found that the first AR coefficient normalized by the square root of the sum of the squares of the
first three AR coefficients provides the most robust DSF. Thus the proposed DSF is defined as
follows:

DSF ¼
a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a21 þ a22 þ a23
q , (4)
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2. (c) Damage pattern 3. (d) Damage pattern 4.
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where a1, a2 and a3 are the first three AR coefficients. Variations of the DSF with the record
number for different damage patterns is illustrated in Figs. 5(a)–(d). From these figures it can be
seen that for all damage patterns there is a significant difference in the mean levels of the DSFs of
the damaged and the undamaged states. Thus, to test statistical difference between the means of
two groups of data, the standard t-test is used [12].
A heuristic understanding of the above DSF is given here. The AR coefficients generally

contain information about the modal natural frequencies and the damping ratios [13,14]. The
ARMA model in the context of the linear input vibration (assuming to be white noise) may then
be treated as an autoregressive model with exogenous input (ARX) time series. This model can be
examined in the complex z domain by applying the time-shifting property of the z-transform [15].
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The z-transform of a function f(t), denoted by F(z), is defined as follows [15]:

F ðzÞ ¼
X1

k¼�1

f ðkÞz�k. (5)

Consider a signal shifted by a time units, f(t�a). The z-transform of f(t�a) is given as follows:

Z f ðt� aÞ½ � ¼ z�aF ðzÞ. (6)

This is known as the time shifting property of the z-transform.
Applying the z-transform to both sides of Eq. (2) and ignoring the effect of the error term, we

obtain

X ijðzÞ ¼
Xp

k¼1

akz�kX ijðzÞ þ
Xq

k¼1

bkz�kXijðzÞ, (7)

where Xij(z) and Xij(z) are the z-transforms of the xij(t) and eij(t), respectively. Then, the transfer
function H(z) is derived as

HðzÞ ¼
X ijðzÞ

XijðzÞ
¼

b1z
�1 þ b2z

�2 þ � � � þ bqz�q

1� a1z�1 � a2z�2 � � � � � apz�p
. (8)

The denominator of the transfer function [H(z)] is a polynomial equation of order p known as
the characteristic equation. The roots of the characteristic equation, known as the poles of the
system, are expressed as follows:

zp � a1zp�1 � a2zp�2 � � � � � ap

� �
¼ 0. (9)

The poles, zpole, of the characteristic equation are a good indicator of the modal natural
frequencies and the damping ratios given by [13]

zpole ¼ e �xonDt�j
ffiffiffiffiffiffiffiffi
1�x2
p

onDt
� �

, (10)

where x and o are the damping ratio and natural frequency of the particular mode and Dt is the
sampling time of the signal. This may also be rewritten as zpole ¼ rejf, where the amplitude r and
phase angle f are expressed as

r ¼ e�xonDt, (11a)

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
onDt. (11b)

Using simple theory of polynomial roots, it can be shown thatX
i

zpole;i ¼ a1, (12a)

X
i;j

zpole;izpole;j ¼ �a2, (12b)

X
i;j;k

zpole;izpole;jzpole;k ¼ a3. (12c)
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Without loss of generality, p is assumed to be even and all the poles to be imaginary. Thus,
Eq. (11a) can be rewritten as follows:

a1 ¼
Xp

i¼1

zpole;i ¼
Xp=2
i¼1

2ri cos fi. (13)

Differentiating with respect to a parameter yi, say an element of the stiffness matrix, we obtain

qa1
qyi

¼
qa1
qki

qki

qyi

, (14)

where ki is the ith modal stiffness. Differentiating with respect to ki and assuming that the
damping ratio is a constant in each mode, we get the following:

qa1
qki

¼ 2
qri

qki

cos fi þ 2ri � sin fi

� � qfi

qki

¼ �
riDtffiffiffiffiffiffiffiffiffi
miki

p

� �
xi cos fi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2i

q
sin fi

� 	
, ð15Þ

where on,i is the ith natural frequency, ri ¼ e�xion;iDt and fi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2i

q
on;iDt. Taking the absolute

value of the sensitivity qa1=qki and since the sampling interval is generally small, we obtain

qa1
qki










 � Dtffiffiffiffiffiffiffiffiffi

miki

p . (16)

It is shown in Appendix A that qki=qyi



 

p1 and thus we can conclude that
qa1=qyi



 

pDt=
ffiffiffiffiffiffiffiffiffi
miki

p
.

Similar equations can be derived for qa2=qyi and qa3=qyi. Thus, it can be concluded that as the
stiffness decreases due to damage, the response of the structure will change resulting in changes of
the AR coefficients. Consequently, the DSF based on the AR coefficients can capture this change
in measurements from an undamaged to damaged structural state.
2.3. Damage localization indices

Fig. 6 shows the damaged and undamaged clouds in the AR coefficient space where two
damage localization indices are defined as follows:

LI1 ¼
dmean

dundam cloud
, (17a)

LI2 ¼
ddam cloud

dundam cloud
, (17b)

where dmean is the distance between the centers of the damaged and undamaged clouds, ddam cloud

is the distance from the origin to the center of the damaged cloud and dundam cloud is the distance
from the origin to the undamaged cloud.
The efficacy of these indices, DSF and LI, will be tested on the ASCE benchmark structure [9]

and this is presented in a later section.
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2.4. Damage-detection algorithm synthesis

The damage-detection algorithm is summarized in the following steps:
�
 Populate a database with signals from the undamaged structure at each sensor location xij(t).

�
 Standardize signal to remove all trends and environmental conditions to obtain ~xijðtÞ.

�
 Obtain signal from zij(t) from the ith sensor of the structure (whose condition we are to
ascertain) and standardize this signal as shown above.

�
 Fit an ARMA model to all data streams including ~zijðtÞ.

�
 Define and compute the mean values of DSF for the pre- and post-event signals.

�
 Determine the statistical significance in the differences of mean values of the pre- and post-
event data using the t-test to report damage decision.

�
 Calculate the LI for each sensor.

The advantage of the damage-detection algorithm presented in this section is that it depends on
signals obtained at a specified location on of a structure. With current smart sensing capabilities
that provide computational power at the sensor location, the algorithm can be embedded and
executed at the data collection site. Because of its simplicity, the algorithm also can be executed
rapidly and efficiently providing critical information in a timely manner.
3. Application results

In order to test the validity of the algorithm, results from the numerical simulation and
laboratory experiments of the ASCE benchmark structure are used. The structure is a four story,
two-bay� two-bay steel-braced frame, illustrated in Fig. 7 [9]. The location of the accelerometers
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Fig. 7. Diagram of the ASCE benchmark structure [9].

Fig. 8. Placement of sensors and location of shaker in the experimental ASCE benchmark structure [10].

K.K. Nair et al. / Journal of Sound and Vibration 291 (2006) 349–368 359
and the loading on the structure are also identified in Fig. 8 [10]. It can be seen that the structure is
subjected to shaking at the top story. Damage is simulated by removing braces in various
combinations, resulting in a loss of stiffness. Damage patterns include
�
 Damage pattern 1: Removal of all braces on the first floor.

�
 Damage pattern 2: Removal of all braces on the first and third floors.

�
 Damage pattern 3: Removal of one brace on the first floor.

�
 Damage pattern 4: Removal of one braces on the first and third floors.
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Damage patterns 1 and 2 are major damage patterns, whereas damage patterns 3 and 4 are
minor damage patterns.

In this study, results from the numerical simulation [9] and the experimental study [10] are

included. In the numerical study, two finite element models were used to generate the simulated
response data: a 12-degree-of-freedom (dof) shear-building model that constrains all motion
except two horizontal translations and one rotation per floor and the second is a 120-dof model
that requires that floor nodes have the same horizontal translation and in-plane rotation. The
columns and floor beams are modeled as Euler–Bernoulli beams and the braces have no flexural
stiffness.
In the experimental benchmark, the force input to the structure was provided by a shaker

placed on the top floor of the structure along the diagonal in the center of the southwest bay (see
Fig. 8). Data from the DasyLab Acquisition system is used [10]. The sampling frequency of the
data set is 250Hz.Also, it should be noted that channel 6 of the DasyLab system was not
operating correctly during the test and thus is not used in this study. We consider only damage
patterns C and D, defined as follows:
�
 Damage pattern C: Removal of a brace from the north face, west bay on the first floor (similar
to damage pattern 3).

�
 Damage pattern D: Removal of a brace from the north face, west bay on the first floor the first
and third floors (similar to damage pattern 4).

3.1. Damage detection

Fig. 5 shows the results from the application of the proposed damage algorithm
to the numerically simulated data sets of the ASCE benchmark structure. From Figs. 5(a)–(d),
it can be observed that there is a significant difference between the mean values of the
DSFs obtained from the damaged and undamaged cases. If mDSF, damaged and mDSF, undamaged are
defined as the mean values of the DSFs obtained from the damaged and undamaged case,
respectively, then a hypothesis test may be set up as follows to determine if their differences are
significant:

H0 : mDSF; undamaged ¼ mDSF; damaged,

H1 : mDSF; undamagedamDSF; damaged, ð18Þ

where H0 and H1 are the null and alternate hypothesis, respectively. H0 represents the undamaged
condition and H1 represents the damaged condition. The significance level of the test is set at 0.05.
Tables 1–4 show the results of the damage decision results for damage patterns 1–4 for the

numerical simulation study. It is observed that for all of the cases the damage decision for all of
the sensors give H1, which indicates damage in the structure. The p-value is the probability that
the DSF does not predict damage, given in fact that there is damage in the structure. Since the p-
values are all significantly much less than the significance level of 0.05, the null hypothesis H0 is
rejected and the alternate hypothesis H1 is accepted.
Tables 5 and 6 show the results of the damage decision for damage patterns C and D in the

experimental benchmark study. Although most of the sensors do show H1, Sensors 11 and 3 give
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Table 2

Results of damage decision for damage pattern 2 (simulated)

Sensor No. Damage decision p-value

1 H1 E0.0

2 H1 E0.0

3 H1 E0.0

4 H1 E0.0

5 H1 E0.0

6 H1 E0.0

7 H1 E0.0

8 H1 E0.0

9 H1 E0.0

10 H1 E0.0

11 H1 E0.0

12 H1 E0.0

13 H1 2.204� 10�6

14 H1 E0.0

15 H1 8.265� 10�6

16 H1 E0.0

Table 1

Results of damage decision for damage pattern 1 (simulated)

Sensor No. Damage decision p-value

1 H1 E0.0

2 H1 E0.0

3 H1 E0.0

4 H1 E0.0

5 H1 E0.0

6 H1 E0.0

7 H1 E0.0

8 H1 E0.0

9 H1 6.260� 10�6

10 H1 E0.0

11 H1 E0.0

12 H1 E0.0

13 H1 E0.0

14 H1 E0.0

15 H1 1.200� 10�6

16 H1 1.875� 10�5

K.K. Nair et al. / Journal of Sound and Vibration 291 (2006) 349–368 361
the decision H0 for cases C and D, respectively. Since H0 indicates no damage, it gives a Type II
error. However, it should be noted that the p-values for both these cases are very close to 0.05 and
thus more investigation is required.



ARTICLE IN PRESS

Table 3

Results of damage decision for damage pattern 3 (simulated)

Sensor No. Damage decision p-value

1 H1 E0.0

2 H1 E0.0

3 H1 E0.0

4 H1 E0.0

5 H1 3.096� 10�6

6 H1 9.385� 10�6

7 H1 E0.0

8 H1 E0.0

9 H1 4.654� 10�6

10 H1 E0.0

11 H1 E0.0

12 H1 E0.0

13 H1 E0.0

14 H1 6.304� 10�6

15 H1 3.105� 10�6

16 H1 0.001056

Table 4

Results of damage decision for damage pattern 4 (simulated)

Sensor No. Damage decision p-value

1 H1 E0.0

2 H1 E0.0

3 H1 E0.0

4 H1 E0.0

5 H1 E0.0

6 H1 7.945� 10�6

7 H1 E0.0

8 H1 E0.0

9 H1 E0.0

10 H1 E0.0

11 H1 E0.0

12 H1 E0.0

13 H1 E0.0

14 H1 1.345� 10�6

15 H1 7.742� 10�6

16 H1 0.009104

K.K. Nair et al. / Journal of Sound and Vibration 291 (2006) 349–368362
3.2. Damage localization

The results of the damage localization indices LI1 and LI2 are illustrated in Tables 7–10. For
damage pattern 1 (Table 7), there is a significant increase in the values of LI1 and LI2 in the first
floor (sensors 1–4) indicating damage in the first floor. Similarly, for damage pattern 2 (Table 8),
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Table 5

Results of damage decision for damage pattern C (experimental)

Sensor No. Damage decision p-value

1 H1 4.301� 10�3

2 H1 1.583� 10�2

3 H1 5.502� 10�4

4 H1 1.973� 10�4

5 H1 1.836� 10�4

6 H1 8.288� 10�6

7 H1 2.700� 10�4

8 H1 1.120� 10�6

9 H1 9.221� 10�3

10 H1 1.003� 10�2

11 H0 5.277� 10�2

12 H1 2.119� 10�3

13 H1 4.823� 10�3

14 H1 1.129� 10�3

15 H1 1.529� 10�2

Table 6

Results of damage decision for damage pattern D (experimental)

Sensor No. Damage decision p-value

1 H1 6.772� 10�3

2 H1 7.958� 10�3

3 H0 5.388� 10�2

4 H1 2.818� 10�5

5 H1 2.174� 10�5

6 H1 1.682� 10�6

7 H1 2.700� 10�4

8 H1 2.899� 10�3

9 H1 5.574� 10�3

10 H1 1.003� 10�2

11 H0 4.053� 10�6

12 H1 3.801� 10�4

13 H1 5.839� 10�3

14 H1 5.853� 10�3

15 H1 7.756� 10�3

K.K. Nair et al. / Journal of Sound and Vibration 291 (2006) 349–368 363
there is a significant increase in the values of LI1 and LI2 for the first and third floors. In the case
of damage pattern 3 (Table 9), index LI1 has a comparatively large value at sensor location 2 in
comparison to other sensor locations, indicating damage close to sensor 2. However, the index LI2
has large values at sensor locations 2 and 4. In the case of damage pattern 4 (Table 10), index LI1
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Table 7

Results of damage localization for damage pattern 1 (simulated)

Sensor No. LI1 LI2

1 2.4951 2.3924

2 1.6787 2.5286

3 2.5094 2.9239

4 1.9262 2.2230

5 0.5721 0.6688

6 0.2155 1.0083

7 0.5655 0.7500

8 0.2476 1.0373

9 0.5494 0.9557

10 0.2405 0.8031

11 0.5167 0.9650

12 0.2573 0.8088

13 0.6094 0.6350

14 0.2768 0.8405

15 0.6040 0.6721

16 0.2312 0.8356

Table 8

Results of damage localization for damage pattern 2 (simulated)

Sensor No. LI1 LI2

1 2.7240 2.8440

2 1.9012 2.0032

3 2.1325 2.4761

4 1.5461 2.2013

5 0.7176 0.9142

6 0.5839 1.3001

7 0.7085 0.9084

8 0.5786 1.2797

9 1.8096 2.6260

10 2.4388 2.8864

11 1.7901 2.3246

12 2.1133 2.8934

13 0.6617 1.5211

14 0.8088 0.9794

15 0.8265 1.6814

16 0.7890 0.9621
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has a comparatively large value at sensor locations 2 and 10 in comparison to other sensor
locations, indicating damage close to sensors 2 and 10. However, the index LI2 has large values at
sensor locations 2, 4 10 and 12. Thus, LI1 seems to be a more robust localization index.
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Table 9

Results of damage localization for damage pattern 3 (simulated)

Sensor No. LI1 LI2

1 0.8871 0.4142

2 1.2898 2.1296

3 0.8644 0.3424

4 0.8666 1.9382

5 0.6264 0.3764

6 0.6291 1.1750

7 0.2949 0.8994

8 0.5436 1.0802

9 0.7097 0.3758

10 0.5335 0.5275

11 0.5266 0.7640

12 0.5469 0.4941

13 0.4691 0.5214

14 0.4240 1.1373

15 0.4630 1.1725

16 0.6080 0.5380

Table 10

Results of damage localization for damage pattern 4 (simulated)

Sensor No. LI1 LI2

1 0.3710 0.6835

2 1.3446 2.1295

3 0.7575 0.9166

4 0.8911 2.4811

5 0.3490 0.6555

6 0.6241 1.1651

7 0.3519 0.8890

8 0.5531 1.1013

9 0.5342 0.4849

10 1.3642 2.1745

11 0.4391 0.5411

12 0.8312 1.6096

13 0.3519 0.8696

14 0.4245 1.1330

15 0.2267 0.8712

16 0.3304 0.9544
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4. Conclusions

In this paper, a damage-detection algorithm based on time series modeling is discussed. A
damage sensitive feature, DSF, which is a function of the first three auto regressive (AR)
components, is also discussed. A hypothesis test involving the t-test is used to obtain a damage
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decision. Two localization indices, LI1 and LI2, defined in the AR coefficient space are also
introduced. The damage detection and localization methodologies were tested on the
analytical and experimental results of the ASCE benchmark structure. The results of the
damage detection indicate that the algorithm is able to detect the existence of all damage patterns
in the ASCE Benchmark simulation experiment where minor, moderate and severe damage
corresponds to removal of single brace, removal of all braces in a story and removal of all braces
in two stories, respectively. These results are very encouraging, but represent initial testing
of the algorithm and further investigations will be needed to test the validity of the damage-
detection method.
The results of the damage localization also indicate that the index LI1 it is able to localize minor

damage patterns. The second localization index, LI2, appears to be non-conclusive when there is
minor damage in the structure. For both, the damage detection and the localization indices
considerably more testing is needed to investigate various scenarios and conditions that introduce
other damage patterns, such as cracking at joints or loosening of bolts. While it may be difficult to
simulate such conditions numerically, they can be reproduced in the laboratory. Thus, additional
testing will be performed as such data become available. Ultimately, these algorithms will need to
be tested with field data. Such data, however, are not currently available.
The advantage of the statistical signal processing approach combined with the pattern

classification framework is that it does not require any elaborate finite element modeling. Such an
approach is particularly suited for wireless sensor analysis, which is able to process data at the
sensor unit location through embedded algorithms. Such data can then be transmitted to a global
master for additional damage analysis using system identification methods.
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Appendix A. Eigenvalue and eigenvector sensitivity analysis

The eigenvalues and eigenvectors of a N degree of freedom system is obtained by solving the
following eigenvalue problem:

Kvr � o2
rMvr ¼ 0 for all r ¼ 1; � � � ;N, (A.1)

where vr be the rth eigenvector corresponding to the eigenvalue o2
r , and K andM are the mass and

stiffness matrices, respectively. Differentiating Eq. (A.1) with respect to parameter yi (say an
element of the stiffness matrix), to obtain

qK
qyi

vr þ K
qvr

qyi

¼ 2or

qor

qyi

Mvr þ o2
rM

qvr

qyi

. (A.2)



ARTICLE IN PRESS

K.K. Nair et al. / Journal of Sound and Vibration 291 (2006) 349–368 367
Pre-multiplying with the transpose of vs and simplifying to obtain

2or

qor

qyi

vTs Mvr ¼ vTs
qK
qyi

vr þ o2
s � o2

r

� �
vTs M

qvr

qyi

. (A.3)

Using the orthogonality property and r ¼ s, we obtain

qor

qyi

¼
1

2or vTr Mvr

� � vTr qK
qyi

vr. (A.4)

It is also shown in Refs. [16,17] that the eigenvector sensitivity is a linear combination of the
eigenvectors, i.e.,

qvr

qyi

¼
XN

j¼1

ki
rjvr, (A.5)

where ki
rj can be derived as [17]

ki
rj ¼

vTj ðqK=qyiÞ � o2
r ðqM=qyiÞ

� �
vr

o2
r � o2

j

for raj,

¼ �
1

2
vTj

qM
qyi

vr for r ¼ j. ðA:6Þ

Since yi is one of the coefficients of the stiffness matrix, we obtain

ki
rj ¼

vTj ðqK=qyiÞvr

o2
r � o2

j

for raj,

¼ 0 for r ¼ j. ðA:7Þ

To obtain the derivative of the rth modal stiffness with respect to yi, qkr=qyi, differentiate the
equation kr ¼ o2

r mr, we obtain

qkr

qyi

¼ 2ormr

qor

qyi

þ 2o2
r

qvTr
qyi

Mvr. (A.8)

Using Eqs. (A.4) and (A.7), Eq. (A.8) can be expressed as

qkr

qyi

¼ vTr
qK
qyi

vr þ 2o2
r

XN

j¼1
jar

vTj ðqK=qyiÞvr

o2
r � o2

j

 !
vj

2
64

3
75 qvTr
qyi

Mvr. (A.9)

This can be further simplified by using the orthogonality principle

qkr

qyi

¼ vTr
qK
qyi

vr. (A.10)

Since vr is normalized, it can also be shown that

qkr

qyi










p1. (A.11)
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